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Abstract. Biomarkers, both biological and imaging, are indicators of specific changes that characterize Alzheimer’s disease (AD)
progression in vivo. Knowing the precise relationship between biomarkers and disease severity would allow for accurate disease
staging and possible forecasting of decline. Jack et al. suggested as an initial hypothesis that this relationship be sigmoidal; the
objective of this article is to determine, using large-scale population data from ADNI, the precise shape of this association. We
considered six different models (linear; quadratic; robust quadratic; local quadratic regression; penalized B-spline; and sigmoid)
and used the Akaike Information Criterion to gauge how well these models compare in conforming to the data. We included
576 subjects (229 controls, 193 AD, and 154 mild cognitive impairment subjects who converted to AD) from the ADNI study,
for whom baseline data on cerebrospinal fluid amyloid-� (A�)42, phosphorylated tau (p-tau), and total-tau (t-tau), hippocampal
volumes, and FDG-PET were available. Analysis of this cross-sectional dataset showed that a local quadratic regression model
was 42% more likely than a sigmoid to be the best model for A�42. This ratio augments to 22% and 73% for Penalized B-Spline in
the case of p-tau and t-tau, respectively; to 3500% for the linear model for FDG-PET; and to 6700% for the Penalized B-Spline
for hippocampal volumes. Preliminary, cross-sectional evidence therefore indicates that the shape of the association with disease
severity is non-linear and differs between biomarkers.
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INTRODUCTION

Alzheimer’s disease (AD) is a neuronal degenera-
tion gradually altering cognitive abilities [1], leading
to functional impairment and thus dementia. AD

1Data used in preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(http://adni.loni.ucla.edu). As such, the investigators within the
ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writ-
ing of this report. A complete listing of ADNI investigators can
be found at: http://adni.loni.ucla.edu/wp-content/uploads/how to
apply/ADNI Acknowledgement List.pdf

∗Correspondence to: Simon Duchesne, Institut Universitaire en
Santé Mentale de Québec, 2601 de la Canadiére, Room F-4435,
G1J 2G3, QC, Canada. Tel.: (418) 663 5741; ext. 4777; Fax: (418)
663 5971; E-mail: simon.duchesne@crulrg.ulaval.ca.

begins with abnormal processing of amyloid-� pro-
tein precursor, which results in excess production or
reduced cleared of amyloid-� (A�) in the cortex [2].
By mechanisms as yet not completely known, this
A� accumulation leads to a cascade characterized by
abnormal tau aggregation, synaptic dysfunction, cell
death, brain shrinkage, and cognitive deficits [3].

Biomarkers, both biological and imaging, are indi-
cators of specific changes that characterize this
progression in vivo. Evidence suggests that these AD
biomarkers do not reach abnormal levels or peak
simultaneously but do so in an ordered manner, con-
sequent with disease progression. Petersen [4] and
Jack et al. [5] have stated that disease progression
is essentially biphasic, with biomarkers of A� depo-
sition first to become abnormal (e.g., cerebrospinal
fluid (CSF) A�), followed by neurodegeneration
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biomarkers (e.g., CSF phosphorylated tau (p-tau) and
total tau (t-tau); fluorodeoxyglucose uptake on positron
emission tomography (FDG-PET); structural magnetic
resonance imaging (MRI)).

In order for AD biomarkers to be used effectively
for disease staging, their trajectories must be mathe-
matically well characterized, and their time-dependent
or “dynamic” ordering must be thoroughly under-
stood [5]. Which model best represents this dynamism
remains to be explained.

If the scope of observation is limited to the preclini-
cal to clinical disease stages,1 and hence regardless of
an individual’s starting point, there are three broad pos-
sibilities: either the rate of progression for biomarkers
shows no variability, has a constant variability, or has
a non-constant variability with time.

Linear models assume a constant progression (zero
variability in rate of progression) over time; an
example within the context of AD is FDG-PET
hypometabolism [6]. Constant rates of progression can
be approximated by power functions, either quadratic
or higher-order, and represent an accelerating disease
burden over time. There is some example evidence for
a quadratic relationship in the reported global brain
atrophy as individuals progress from MCI to typical,
late-onset AD [7, 8]. Finally, non-constant rates of pro-
gression imply periods of acceleration and deceleration
in the disease process. The simplest case is for one
such complex, i.e., a sigmoid, as argued by Jack et al.
Evidence to this effect can be found in mice studies
[9]. The more involved case implies multiple phases
of acceleration and deceleration; the deposition of A�
oligomers has been shown to exhibit this type of rela-
tionship [10]. No strong evidence to date exists to our
knowledge to imply that all biomarkers will follow a
similar time course.

The objective of this article is to investigate the
shape of this association between each biomarker and
disease severity. The sigmoid hypothesis was origi-
nally tested by Caroli et al. [11], however, solely in
comparison to linear regression. Without imposing a
priori knowledge, we considered six different models
of different orders in the present article.

These models (e.g., linear, sigmoid) are not nested,
i.e., one is not a simplified version of another; hence,
the statistical comparison approach taken in Caroli
et al. is not entirely appropriate. Our chosen alternative
is the Akaike Information Criterion (AIC), which can

1Genetic, developmental, and lifelong environmental factors are
likely contributors to an individual’s biomarkers level status entering
the preclinical to clinical phases of AD.

be used to compare two or more nested or non-nested
models, based on different probability distributions.
The AIC does not require the assumption that one of
the candidate models is the “true” or “correct” model;
as such, it is not a hypothesis test, does not have a
p-value and does not use notions of significance.
Rather, it focuses on the strength of evidence to gauge
how well the models compete to conform to the data.

METHODS

Study population

In order to achieve scientific accuracy and statistical
validity, the data needs to include numerous chemi-
cal and imaging biomarkers, collected longitudinally
from large samples representing the full spectrum of
the disease, including normal aging and its prodromal
phase, referred to as mild cognitive impairment (MCI)
[12]. To date, arguably the largest and best effort of
this kind is the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) [13].2 To this end, in the first phase
of the study, a total of 822 subjects were recruited at
58 sites throughout the United States and Canada for
longitudinal follow-up.

As a convenient but admittedly crude first approxi-
mation, we elected to use cross-sectional baseline data
from the ADNI study, as per the Caroli et al. article.

2Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(http://adni.loni.ucla.edu). The ADNI was launched in 2003 by
the National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and
Drug Administration (FDA), private pharmaceutical companies,
and non-profit organizations, as a $60 million, 5-year public-
private partnership. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the
progression of MCI and early AD. Determination of sensitive and
specific markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments and monitor
their effectiveness, as well as lessen the time and cost of clinical tri-
als. The Principal Investigator of this initiative is Michael W. Weiner,
MD, VA Medical Center and University of California-San Fran-
cisco. ADNI is the result of efforts of many co-investigators from
a broad range of academic institutions and private corporations,
and subjects have been recruited from over 50 sites across the US
and Canada. The initial goal of ADNI was to recruit 800 adults,
ages 55 to 90, to participate in the research, approximately 200 cog-
nitively normal older individuals to be followed for 3 years, 400
people with MCI to be followed for 3 years, and 200 people with
early AD to be followed for 2 years. For up-to-date information, see
http://www.adni-info.org.
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Thus, we included for this retrospective study all ADNI
controls, AD, and MCI subjects who converted to AD
on whom biomarker data were available.

All experiments were performed with the informed
and overt consent of each participant or caregiver, in
line with the Code of Ethics of the World Medical
Association (Declaration of Helsinki) and the stan-
dards established by the Author’s Institutional Review
Board.

Biomarkers

Among the most studied biomarkers of AD, we
select the following four in our experiments [11]:

• decreased CSF A�, as a marker of brain A� plaque
deposition;

• increased CSF p-tau and t-tau, as an indicator of
tau pathological changes and associated neuronal
injury;

• decreased FDG-PET, used to measure net brain
metabolism; and

• structural MRI measures of cerebral atrophy,
especially hippocampal volumes, providing mea-
sures of cerebral atrophy caused by dendritic
pruning and loss of synapses and neuron.

CSF acquisition was performed for a large subset of
subjects and analyzed at the University of Pennsylvania
ADNI Biomarker Core Laboratory. Post-processing
included monoclonal antibodies specific for A�42,
t-tau, and p-tau phosphorylated at threonine 181. For
modeling purposes, we used the A�42, p-tau, and t-tau
measurements only, as they were shown to correlate
with clinical disease severity [14] and have been well
validated and described in the course of the ADNI
study [15].

FDG-PET scans were performed on a subset of
subjects. All scans underwent quality control and
pre-processing at the University of Michigan; post-
processing analysis was performed at the University of
Utah. For modeling purposes we used the average cere-
bral metabolic rate of glucose consumption in frontal,
parietal, and temporal cortices, normalized to pons, as
a measure of cerebral metabolism.

Volumetric MP-RAGE 1.5 Tesla MRI scans were
collected for each subject. Following pre-processing
at the University California, Los Angeles, left and
right hippocampal volumes were semi-automatically
computed at University of California, San Francisco,
using a commercially available high dimensional
brain mapping tool (Medtronic Surgical Navigation
Technologies (SNT), Louisville, CO). For modeling

purposes, we used the average of left and right hip-
pocampal volumes.

The data used in this study was taken directly
from the ADNI-controlled Study Data files (https://
ida.loni.ucla.edu/login.jsp?project=ADNI%2f). Read-
ers are referred to the ADNI procedure manuals
(http://www.adni-info.org) for detailed descriptions of
standardized data acquisition as well as biomarker pre-
and post-processing.

Models description

We elected to test various linear and non-linear
models for the association of biomarkers with disease
severity. For each model a brief description follows,
with prototypical curves shown in Fig. 1, and a com-
plete mathematical description provided in Supple-
mentary data (available online: http://www.j-alz.com/
issues/30/vol30-1.html#supplementarydata02).

Linear models

A linear model (Fig. 1A) assumes that the relation-
ship between the variables is constant; the starting
point (intercept) may or may not be positive. Within
the context of AD, net brain metabolism as measured
via FDG-PET uptake has often been reported as a linear
decline over time as the disease progresses [6].

Non-linear models

Variability in the rate of progression over time, i.e.,
acceleration or deceleration, implies a departure from
linearity. Based on this criterion, we propose to exam-
ine two model classes.

Should this variability be constant, the model will
follow a power law (e.g., x2, x3):

(i) We tested regular (see Fig. 1B) and robust ver-
sions of the quadratic model (see Fig. 1C),
whereby the regression model parameters were
estimated using a method less sensitive to out-
liers than the least squares estimates. Rates of
whole brain atrophy in patients, as measured
on MRI, have been shown to be accelerating
as individuals progress from MCI to typical,
late-onset AD [7, 8];

(ii) Locally fitting a model to the underlying data
should increase overall fit. To this end, we
used the locally weighted polynomial regres-
sion technique (LOESS), whereby at each point
in the data set a low-degree polynomial was fit-
ted to a subset of the data using weighted least

http://www.adni-info.org
http://www.j-alz.com/issues/30/vol30-1.html#supplementarydata02
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Fig. 1. Prototypical model curves.

squares, giving more weight to points near the
point whose response is being estimated and less
weight to points further away. Since we used a
2nd degree polynomial, in effect we employed a
locally weighted quadratic model (see Fig. 1D).
This has been used before to model the longitu-
dinal course of ADAS-Cog scores [16].

Given that we used synthetic data to generate the
prototypical curves of Fig. 1, the last three models are
almost indiscernible to the naked eye.

Should the variability in the rate of progression not
be constant, the model will be approximated by a
spline – smoothly varying as a function of time.

(i) Within this model category we first examined
the logistic function, commonly known as a
sigmoid or S-curve (see Fig. 1E). This is a
spline exhibiting only one inflection/deflection
complex. It is characterized by an initial stage
of growth, approximately exponential; then, as
saturation begins, the growth slows, and at matu-
rity, growth stops. As noted in Jack et al. [17],
this implies that the maximum effect of each
biomarker varies over the course of disease pro-
gression. Evidence to this effect can be found in
mice studies [9];

(ii) A B-spline is a sufficiently smooth piecewise-
polynomial function that can model multiple
stages of growth and saturations, and even
regressions (see Fig. 1F). The deposition of A�
oligomers has been shown to exhibit this type
of relationship [10].

Models comparison

All subjects were ordered based on their score on the
AD assessment scale-cognitive (ADAS-Cog) as a sur-
rogate marker of time. The ADNI dataset provides thus
a “time-range” spanning the full spectrum of disease,
from normal cognition through mild, moderate, and
severe forms of AD. For the purpose of this study, we
have chosen to limit our analysis on the range ADAS-
Cog=[0, 30], given that there was a paucity of data at
higher values (ADAS-Cog>30), which correspond to
more advanced dementia state (see Limitations).

We plotted for each biomarker individual biomarker
z-scores against ADAS-Cog, calculated sums of
squares and R-squares in order to show model fit with
the biomarkers data, and proceeded with fitting the
six different models for each biomarker. The use of
z-scores allows for easier comparison and interpreta-
tion of different biomarkers in subjects.

Given the number of models and difference in model
order, we used the AIC for comparisons and model
selection (see Supplementary data), a technique pio-
neered by Akaike [18] and used since in the medical
literature as well (e.g., [19]). This criterion is optimized
when the model has the maximum fit for the minimum
number of parameters (simplicity and parsimony). By
comparing AIC for different models, we can derive
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Table 1
Study subject characteristics

Controls (n = 229) MCI Converted AD (n = 154) Early AD (n = 95) Late AD (n = 98) p

Age (years) 76.0 ± 5.0 74.6 ± 7.0 75.3 ± 7.4 75.6 ± 7.6 0.21
Gender (female) 110 (48.03%) 60 (38.96%) 43 (45.26%) 48 (48.98%) 0.29
Education (years) 16.0 ± 2.9 15.7 ± 2.9 15.1 ± 2.9 14.3 ± 3.3 <0.0001
MMSE 29.1 ± 1.0 26.7 ± 1.7 25.2 ± 0.9 21.6 ± 1.2 <0.0001
ADAS-Cog 6.2 ± 2.9 13.3 ± 4.2 16.3 ± 5.5 20.9 ± 6.2 <0.0001
APOE ε4 (carriers) 61 (26.64%) 107 (69.48%) 65 (68.42%) 62 (63.27%) <0.0001

Table 2
Biomarker characteristics

Controls MCI progressors Early AD Late AD p

Total tau
n 114 79 57 45
pg/mL 69.7 ± 30.4 110.3 ± 51.1 113.9 ± 61.2 125.8 ± 57.6 <0.0001

Phosphorylated tau
n 114 79 57 45
pg/mL 24.9 ± 14.6 39.4 ± 15.8 38.7 ± 17.7 45.3 ± 21.8 <0.0001

A�42
n 114 79 57 45
pg/mL 205.6 ± 55.1 141.9 ± 43.9 144.3 ± 45.8 141.3 ± 33.9 <0.0001

FDG-PET
n 102 67 53 44
CRMglc 1.4 ± 0.1 1.3 ± 0.1 1.3 ± 0.1 1.2 ± 0.1 <0.0001

Hippocampal volume
n 159 119 63 66
mL 2155 ± 297 1739 ± 363 1654 ± 356 1599 ± 323 <0.0001

a likelihood ratio describing how much support any
model has over competing ones. We first report the
likelihood ratios between linear and sigmoid models,
and then all other models.

We performed statistical analyses using SAS 9.2 for
windows (SAS/Stat, SAS/IML and SAS/Graph soft-
ware, SAS, Cary, NC).

RESULTS

From the complete ADNI dataset, we included
576 subjects for whom baseline biomarker data were
available: 229 healthy controls (age = 76 ± 5 years,
48% females), 154 MCI patients who converted to
AD (age = 74 ± 7 years, 39% females, conversion
time = 1.7 ± 0.8 years (6–36 months)), and 193 AD
patients (age = 75 ± 7 years, 47% females). Summary
sociodemographic, clinical, and neuropsychological
statistical features for this population can be found in
Table 1; biomarker information in Table 2.

Individual biomarker plots of z-scores against
ADAS-Cog can be found in Fig. 2, and calculated SSq
and R-squares of model fit with the biomarkers data
can be found in Table 3. With higher R-square results,
it would appear that A�42 and hippocampus biomark-
ers had a better fit than t-tau and FDG-PET. Further,

based solely on Table 3, it would appear as though the
Penalized B-Spline model had a consistently better fit
for all biomarkers. However, this model has more fac-
tors (covariates) than others and therefore, as discussed
above, we calculated the AIC, Akaike weights, and evi-
dence ratios to compare and select the best model for
each biomarker. These are shown in Table 4.

The AIC evidence ratios measure how many times
the best-fitting model is likely to be the best model
in terms of AIC. The Sigmoid model was more likely
than the Linear model to be the best fitting model by a
factor of 5.5 × 105 for A�42 (very strong likelihood);
of 162.4 and 100.5 for p-tau and t-tau, respectively
(strong likelihood); of −0.01 for FDG-PET (i.e., less
likely); and 1.2 (i.e., just as likely) for hippocampus.

However, overall the Sigmoid, Quadratic, and
Robust models were never as likely as other models.
The most likely model for A�42 was LOESS
(AIC = −46.03; probability = 36.6% of being
the best model); for p-tau, Penalized B-Spline
(AIC = 259.33; probability = 83.4%), similarly for
t-tau (AIC = 311.39; probability = 35.7%); for FDG-
PET, Linear (AIC = −5.122; probability = 35.4%); and
for hippocampus, Penalized B-Spline (AIC = 139.0;
probability = 82.7%). These most likely models are
shown, superimposed on the data, in Fig. 2.
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Fig. 2. Individual biomarker plots of z-scores against ADAS-Cog, with 6 models superimposed (left) and most likely model (right).
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Table 3
Model fit estimates

Biomarker CSF p-tau CSF t-tau CSF A�42 FDG-PET Hippocampus
model SSq R2 SSq R2 SSq R2 SSq R2 SSq R2

Linear 736.11 0.1830 860.33 0.0975 268.93 0.1816 255.11 0.2155 576.71 0.2715
Quadratic 703.64 0.2012 825.54 0.1340 248.87 0.2426 254.23 0.2182 569.01 0.2812
Robust 752.56 0.1721 854.47 0.1036 250.59 0.2374 256.06 0.2126 570.34 0.2795
PB-Spline 686.88 0.2279 819.45 0.1404 244.28 0.2566 252.76 0.2228 558.75 0.2942
LOESS 703.68 0.2010 831.80 0.1274 245.63 0.2525 254.42 0.2177 568.74 0.2815
Sigmoid 706.34 0.1997 828.09 0.1313 246.21 0.2507 260.05 0.2003 573.23 0.2759

SSq, sum of squares; R2, R-square

Table 4
Akaike information criterion, weights, and evidence ratios

Akaike information criterion/Akaike weights Model/Evidence ratio

Model t-tau p-tau A�42 FDG-PET Hippo t-tau p-tau A�42 FDG-PET Hippo

Linear 321.75 275.75 −21.30 −5.12 147.85 177.74 3671.19 235371.83 1.00 84.52
0.002 0.000 0.000 0.354 0.010

Quadratic 311.57 264.44 −42.17 −4.03 144.38 1.10 12.87 6.91 1.72 14.91
0.326 0.065 0.053 0.206 0.056

Robust 321.74 286.27 −40.14 −2.13 145.33 176.43 706536.21 19.08 4.46 24.03
0.002 0.000 0.019 0.079 0.034

PB-Spline 311.39 259.33 −45.66 −3.59 138.97 1.00 1.00 1.21 2.16 1.00
0.357 0.834 0.303 0.164 0.827

Local regression 313.80 264.46 −46.03 −3.84 144.19 3.34 12.99 1.00 1.90 13.58
0.107 0.064 0.366 0.187 0.061

Sigmoid 312.48 265.57 −45.33 1.98 147.39 1.73 22.60 1.42 34.89 67.13
0.207 0.037 0.258 0.010 0.012

For A�42, the LOESS model is therefore 42% more
likely to be the best model than the Sigmoid. For
t-tau and p-tau, this ratio augments from 73% to
226% for Penalized B-Spline, respectively; for FDG-
PET, 3500% for Linear, and 6700% for the Penalized
B-Spline for hippocampus.

DISCUSSION

We proposed a thorough statistical analysis of base-
line biomarker data within the timeline and context
of the ADNI, and hence essentially in the preclinical
to clinical phase of AD. The original hypothesis, as
proposed in Jack et al. [6], was that the relationship
between biomarkers and disease severity followed a
sigmoid function.

Results show that within this timeframe, A�42 had a
piece-wise quadratic relationship with disease severity,
as can be seen in Fig. 2A. The relationship dis-
plays immediate accumulation, which decreases with
advanced disease state, and eventually plateaus. This
pattern could be the tail-end of a sigmoid curve of accu-
mulation as hypothesized by Jack and others, which
seems to fit the data provided by PET studies with
A� imaging compounds [20]. Alternatively, it suggests
a non-zero intercept and hence a minimum level of

amyloid deposition. Both of these explanations mean
that early A� deposition has no discernable effect on
cognition (ADAS-Cog remains null).

CSF measures of p-tau and t-tau as well as hip-
pocampal volumes were best modeled using penalized
B-splines, which corresponds to a quadratic fit between
anchor points. As can be seen in Fig. 2B and D,
both curves exhibit a repeating pattern of increase in
severity, followed by a plateau. They appear to be tem-
porally coupled with p-tau increases preceding t-tau
(see Fig. 3). These data match previous evidence that
rates of hippocampal atrophy and tau accumulation
are not constant over time [21, 22]. The important
aspect of a B-spline is its ability to have multiple
inflexion points and thus multiple phases of accumu-
lation/plateau; this is highly non-linear. Biologically,
it would imply repeated attainment and disruptions of
some form of homeostasis, for example with resump-
tion of inflammatory [23] or neurovascular processes
[24], as opposed to a continuous, uninterrupted neu-
rodegeneration. Changes in tau may be related to
different progression patterns in some forms of A� [9].

Finally, FDG-PET results indicate a linear decline
with disease progression (Fig. 2C). This constant
decrease in cerebral metabolism is indicative of
decreased connectivity.
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Fig. 3. Most likely models for each biomarker superimposed on
similar disease severity scale show strong coupling of degeneration
biomarkers for inter-subject cross-sectional data (105 subjects with
all biomarkers at baseline).

Our FDG-PET results are also consistent with those
obtained by Caroli et al. [11]; however, we find dis-
crepant results for other biomarkers. This can be
explained primarily from the fact that they did not test
models other than linear and sigmoid; secondly, given
the strongly non-linear nature of the data, it is not sur-
prising to find that a sigmoidal model had the best fit.
However, it does not mean it was the best non-linear
model.

Limitations

These results may seem to disprove the sigmoidal
hypothesis—that is, that each biomarker follows the
same logistic curve, but should be interpreted in light
of limitations.

For starters, models were not fit above ADAS-
Cog>30 due to a paucity of data above that score; this
precludes us from drawing conclusions on the behav-
ior of the chosen biomarkers in late disease stages.
This is a known limitation of the ADNI cohort in
general, namely that probable AD subjects were not
followed as long as other control or MCI subjects. We
have attempted to mitigate this effect in our analysis
by using robust techniques to remove the influence of
outliers on model fit. In general, however, there is a
risk using this data of painting a limited picture of
the true full-course of AD, from pre-symptomatic to
end of life. Model fitting in a short timeframe can
be misleading; for example, a sigmoidal time course
can appear to be linear or quadratic, depending on the
time window; this might explain the FDG-PET results.
Likewise, it would be unwise at this point to embark on

observations regarding a lifelong AD process, given the
limited timespan of the data we analyzed, as it would
represent nothing more than mere conjectures. In order
to expand the time course, one would have to possess
a significantly large dataset of control, MCI, and AD
subjects followed up for at least longer than a decade;
such a dataset is cost prohibitive and few, if any, exist. It
is likely that we will need to federate multiple databases
together to arrive at a global picture of the time course
of AD; inevitably, however, issues of standardization
between studies must be resolved first before we can
compare biomarker data.

A second issue is concerned with the use of the
ADAS-Cog scale as a proxy of disease time course.
The ADAS-Cog shows saturation effects at both ends
of the cognition spectrum, common to other scales
(e.g., Mini-Mental Status Examination (MMSE), Clin-
ical Dementia Rating), notwithstanding their test-retest
variability. To determine if ADAS-Cog was a major
source of variability, we performed similar analyses
using either another test (MMSE) or other biomarker
(CSF t-tau) as proxies of disease time course (e.g., plot
of hippocampal volume against CSF t-tau); the results
were more or less identical (data not shown). In the
end, we elected to maintain cognitive testing, and in
particular ADAS-Cog, as the common denominator for
biomarker model fit, given their critical importance in
defining disease stages [25].

Secondly, and most obviously, the fit are based on
a cross-sectional, single timepoint evaluation of multi-
ple subjects. Further studies should be conducted using
the rate of change in biomarkers with time to pro-
vide definite answers to the best disease trajectory.
Preliminary evidence from Schuff et al. [26] on lon-
gitudinal data supports our baseline findings; yet, a
sigmoidal relationship may still be the most apt rep-
resentation of disease process, as 1-year results from
Sabuncu et al. also propose [22]. Finally, we plotted
the different biomarker curves with respect to disease
severity in subjects for which all biomarkers were col-
lected (nControls = 39; nMCI convert = 26; nEarly AD = 24;
nLate AD = 26; total n = 105) (see Fig. 3). It can be appre-
ciated that the time ordering is strongly coupled, rather
than significantly temporally dissociated, as suggested
in the theoretical model. This is strictly indicative,
given that it compares baseline data, as mentioned
previously.

Methodological considerations

We assessed six different models (linear; quadratic;
LOESS; robust quadratic regression; sigmoid; and
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penalized B-spline;) of different order and compared
them using metrics based on the AIC. Due to its wider
scope and statistical treatment, we evaluate that these
results are more reliable than the previous analysis by
Caroli et al.

It should be mentioned that results on higher power
(e.g., x3, x4) and exponential functions, which would
fall alongside quadratic fits within the first class of
models, were inconclusive and therefore for the sake
of clarity were not shown.

The AIC provides an objective way of determining
which model among a set of specified models is the
most parsimonious, based on a solid statistical prin-
ciple (i.e., maximum likelihood). This is especially
important when the specified models are not nested. In
a loose sense, we can say that Model A is nested within
Model B if Model A is a special case of Model B; this
is not our case as we try to compare various model
families. We agree, however, that this criterion is only
as good as the data underlying the fit, and the con-
clusions will depend on the set of candidate models
specified. Therefore, it can be said that the AIC model
selection technique only selects the best model from
the specified set; it does not detect if a better model
exists.

In our opinion, the sample size is large enough for
each model fit, and thus the penalty term (second term
in eq. 8) provides an adequate bias adjustment. Because
of the large effective sample size, the use of a second-
order AICc is unnecessary, because AICc and AIC
converge as n/p gets large [27]. This is showed by this
equation:

AICc = n. ln(SSq/n) + 2p

+2p(p + 1)

n − p − 1
converges to AIC as n gets larger.

It remains that to have an unbiased AIC, the true
model must be in the family of candidate models. If
this assumption is violated, the AIC criterion can be
biased.

CONCLUSION

Initial analysis of cross-sectional multi-centric
ADNI baseline data empirically support a linear pro-
gression in FDG-PET hypometabolism, and non-linear
progression for CSF A�, p-tau, and t-tau accumulation
as well as hippocampal atrophy throughout the various
phases of AD.
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